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Answer ALL the questions.

I. a) i) Prove that the similar matrices have the same characteristic polynomial.

OR

ii) Let T be a linear operator on 
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which is represented in the standard ordered basis by the matrix . Prove that T is not diagonalizable.
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b) i) State and prove Cayley-Hamilton theorem.

OR

ii) Let V be a finite dimensional vector space over F and T a linear operator on V.Then prove that T is diagonalizable if and only if the minimal polynomial for T has the form p=
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 are distinct elements of F. 
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II. a) i) Let V be a finite dimensional vector space. Let 
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be subspaces     such that
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. Then prove that 
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are independent subspaces.

OR

ii) Let W be an invariant subspace for T.  Then prove that the minimal polynomial for 
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 divides the minimal polynomial for T.
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b) i) State and prove Primary Decomposition theorem.

OR

ii) If
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, then prove that there exist k linear operators 
[image: image13.wmf]k

E

E

,...,

1

 on V such that 

1. Each 
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is a projection.

2. 
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3. 
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4. The range of 
[image: image17.wmf]i

E

is
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iii) Prove that if 
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 are k linear operators which satisfy conditions 1, 2 and 3 of the above and if let 
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III. a) i) Let T be a linear operator on a vector space V and W a proper T-admissible subspace of V. Prove that W and Cyclic subspace Z((;T)  are independent.

OR

ii) Let T be a linear operator on 
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which is represented in the standard ordered basis by the matrix 
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. Prove that T has no cyclic vector. What is the T-cyclic subspace generated by the vector (1,-1, 3)?

      



(5)

b) i) Let ( be any non-zero vector in V and let [image: image26.png]


 be the T-annihilator of [image: image28.png]


. Prove the following statements:


1. The degree of [image: image30.png]


 is equal to the dimension of the cyclic subspace      Z((;T).

      2. If the degree of [image: image32.png]


 is k, then the vectors (, T(, [image: image34.png]


,…[image: image36.png]


 form the   basis for Z((;T).

      3. If U is the linear operator on Z((;T) induced by T, then the minimal polynomial for U is [image: image38.png]


.

OR

ii) Let T be a linear operator on a finite dimensional vector space V and let 
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be a proper T-admissible subspace of V. Prove that there exist non-zero vectors 
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in V with respective T-annihilators 
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IV. a) i) Define a positive matrix. Verify that the matrix 
[image: image45.wmf]1     1+i

1-i     3

æö

ç÷

èø

is positive.

OR

ii) Let V be a complex vector space and f a form on V such that f (
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) is real for every
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. Then prove that f is hermitian.
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b) i) Let F be the field of real numbers or complex numbers. Let A be an nxn matrix over F. Then prove that the function g defined by 
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is a positive form on the space 
[image: image49.wmf]1

+

n

F

if and only if there exists an invertible nxn matrix P with entries in F such that
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ii) State and prove Principle Axis theorem.
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Or

iii) State and prove Spectral theorem and hence prove if
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V. a) i) Define a bilinear form on a vector space over a field. Let m and n be positive integers and F a field. Let V be the vector space of all mxn matrices over F and A be a fixed mxm matrix over F. If
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 is a bilinear form.

Or

ii) State and prove polarization identity for symmetric bilinear form f.
    (5)


b) i) Let V be a finite dimensional vector space over the field of complex numbers. Let f be a symmetric bilinear form on V which has rank r. Then prove that there is an ordered basis 
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for V such that the matrix of f in the ordered basis B is diagonal and f (
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Or

ii) If f is a non-zero skew-symmetric bilinear form on a finite dimensional vector space V then prove that there exist a finite sequence of pairs of vectors,
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with the following properties:

1) f (
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2) f (
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3) If 
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is the two dimensional subspace spanned by 
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where 
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is orthogonal to all 
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 and the restriction of f to 
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